Differentiation of gastric adenocarcinoma and pancreatic adenocarcinoma using immunohistochemistry biomarkers: a systematic review and meta-analysis study
Gastroenterology and Hepatology from Bed to Bench,
Vol. 17 No. 4 (2024),
2 Azar 2024
https://doi.org/10.22037/ghfbb.v17i4.3057
Abstract
Aim: This survey aimed to assess the differentiation of Gastric adenocarcinoma (GA) and pancreatic adenocarcinoma (PA) via immunohistochemistry biomarkers.
Background: GA and PA are two gastrointestinal malignancies with similarities in immunohistochemical features, making the diagnosis complex in some cases.
Methods: We searched international databases, including Google Scholar, Web of Science, PubMed, Embase, PROQUEST, and Cochrane Library, using appropriate keywords. The variance of each study was calculated using the binomial distribution formula, with all data analyzed by R version 16. Pooled odds ratios (OR), 95% confidence intervals (CI), and the I² test were calculated to evaluate the effectiveness of various immunohistochemistry biomarkers. Publication bias was assessed using funnel plots plus Begg’s and Egger’s tests.
Results: Based on the finding of our study, four potent biomarkers which can distinguish GA from PA were Cadherin 17 (CDH17) with pooled OR= 3.73 (95% CI 1.58 to 8.87), P value=0.003, and I2=55.5%; Caudal-type homeobox 2 (CDX2) with pooled OR=8.99 (95% CI 4.52 to 17.90), P value= <0.001, and I2=52.2%; CK7 with pooled OR= 0.15 (95% CI 0.04 to 0.57), P value= 0.005, and I2=56.6%; CK20 with pooled OR=2.06 (95% CI 1.38 to 3.08), P value= <0.001, and I2=0%.
Conclusion: Our study identified CDH17, COX-2, CK7, and CK20 as potent IHC biomarkers for differentiating PA and GA. Incorporating these biomarkers into routine diagnostics is essential for improving accuracy in challenging cases, ultimately aiding timely treatment decisions and improving patient outcomes.
- Gastric Adenocarcinoma
- Pancreatic Adenocarcinoma
- Immunohistochemistry
- CDH17
- COX-2
- CK7
- CK20
- Biomarker
How to Cite
References
Kuntz S, Krieghoff-Henning E, Kather JN, Jutzi T, Höhn J, Kiehl L, et al. Gastrointestinal cancer classification and prognostication from histology using deep learning: systematic review. Eur J Cancer 2021;155:200-15.
Wang D, DuBois RN. Role of prostanoids in gastrointestinal cancer. J Clin Invest 2018;128:2732-42.
Arnold M, Abnet CC, Neale RE, Vignat J, Giovannucci EL, McGlynn KA, et al. Global burden of 5 major types of gastrointestinal cancer. Gastroenterology 2020;159:335-49.
Bond-Smith G, Banga N, Hammond TM, Imber CJ. Pancreatic adenocarcinoma. Br Med J 2012;344.
Rawla P, Sunkara T, Gaduputi V. Epidemiology of pancreatic cancer: global trends, etiology and risk factors. World J Oncol 2019;10:10-27.
Stewart BW, Kleihues P. World Cancer Report. IARC Press, Lyons; 2003:232-236.
Ajani JA, Lee J, Sano T, Janjigian YY, Fan D, Song S. Gastric adenocarcinoma. Nat Rev Dis Primers 2017;3:1-19.
Zhang P, Zou M, Wen X, Gu F, Li J, Liu G, et al. Development of serum parameters panels for the early detection of pancreatic cancer. Int J Cancer 2014;134:2646-55.
Rawla P, Barsouk A. Epidemiology of gastric cancer: global trends, risk factors and prevention. Prz Gastroenterol 2019;14:26-38.
Tan YK, Fielding JWL. Early diagnosis of early gastric cancer. Eur J Gastroenterol Hepatol 2006;18:821-9.
Tiengo T, Fernandes GA, Curado MP. Gastric adenocarcinoma: 1-year overall survival, disability-adjusted life years, years of life lost, and prognostic factors-a single-institution experience. Front Oncol 2022;12:918833.
Nystrom JS, Weiner JM, Heffelfinger-Juttner J, Irwin LE, Bateman JR, Wolf RM. Metastatic and histologic presentations in unknown primary cancer. Semin Oncol 1977;4:53-8.
Hillen HF. Unknown primary tumours. Postgrad Med J 2000;76:690-3.
Varadhachary GR, Abbruzzese JL, Lenzi R. Diagnostic strategies for unknown primary cancer. Cancer 2004;100:1776-85.
Pavlidis N, Briasoulis E, Hainsworth J, Greco FA. Diagnostic and therapeutic management of cancer of an unknown primary. Eur J Cancer 2003;39:1990-2005.
Sheahan K, O'Keane JC, Abramowitz A, Carlson JA, Burke B, Gottlieb LS, et al. Metastatic adenocarcinoma of an unknown primary site. A comparison of the relative contributions of morphology, minimal essential clinical data and CEA immunostaining status. Am J Clin Pathol 1993;99:729-35.
Ney JT, Zhou H, Sipos B, Büttner R, Chen X, Klöppel G, et al. Podocalyxin-like protein 1 expression is useful to differentiate pancreatic ductal adenocarcinomas from adenocarcinomas of the biliary and gastrointestinal tracts. Hum Pathol 2007;38:359-64.
Lerner G, Billingsley K, Aslanian H, Robert ME. Extremely well-differentiated gastric adenocarcinoma arising in gastric adenomyoma. Hum Pathol Rep 2021;26:300573.
Jiang XJ, Lin J, Cai QH, Zhao JF, Zhang HJ. CDH17 alters MMP-2 expression via canonical NF-κB signalling in human gastric cancer. Gene 2019;682:92-100.
Lin F, Shi J, Zhu S, Chen Z, Li A, Chen T, et al. Cadherin-17 and SATB2 are sensitive and specific immunomarkers for medullary carcinoma of the large intestine. Arch Path Lab Med 2014;138:1015-26.
Altree-Tacha D, Tyrrell J, Haas T. CDH17 is a more sensitive marker for gastric adenocarcinoma than CK20 and CDX2. Arch Path Lab Med 2017;141:144-50.
Panarelli NC, Yantiss RK, Yeh MM, Liu Y, Chen YT. Tissue-specific cadherin CDH17 is a useful marker of gastrointestinal adenocarcinomas with higher sensitivity than CDX2. Am J Clin Pathol 2012;138:211-22.
Aasebø K, Dragomir A, Sundström M, Mezheyeuski A, Edqvist PH, Eide GE, et al. CDX2: a prognostic marker in metastatic colorectal cancer defining a better BRAF mutated and a worse KRAS mutated subgroup. Front Oncol 2020;10:8.
Yu J, Liu D, Sun X, Yang K, Yao J, Cheng C, et al. CDX2 inhibits the proliferation and tumor formation of colon cancer cells by suppressing Wnt/β-catenin signaling via transactivation of GSK-3β and Axin2 expression. Cell Death Dis 2019;10:26.
Park SY, Kim BH, Kim JH, Lee S, Kang GH. Panels of immunohistochemical markers help determine primary sites of metastatic adenocarcinoma. Arch Path Lab Med 2007;131:1561-7.
Mazziotta RM, Borczuk AC, Powell CA, Mansukhani M. CDX2 immunostaining as a gastrointestinal marker: expression in lung carcinomas is a potential pitfall. Appl Immunohistochem Mol Morphol 2005;13:55-60.
Kaimaktchiev V, Terracciano L, Tornillo L, Spichtin H, Stoios D, Bundi M, et al. The homeobox intestinal differentiation factor CDX2 is selectively expressed in gastrointestinal adenocarcinomas. Mod Pathol 2004;17:1392-9.
Bayrak R, Haltas H, Yenidunya S. The value of CDX2 and cytokeratins 7 and 20 expression in differentiating colorectal adenocarcinomas from extraintestinal gastrointestinal adenocarcinomas: cytokeratin 7-/20+ phenotype is more specific than CDX2 antibody. Diagn Pathol 2012;7:9.
Werling RW, Yaziji H, Bacchi CE, Gown AM. CDX2, a highly sensitive and specific marker of adenocarcinomas of intestinal origin: an immunohistochemical survey of 476 primary and metastatic carcinomas. Am J Surg Pathol 2003;27:303-10.
Moskaluk CA, Zhang H, Powell SM, Cerilli LA, Hampton GM, Frierson HF, Jr. Cdx2 protein expression in normal and malignant human tissues: an immunohistochemical survey using tissue microarrays. Mod Pathol 2003;16:913-9.
Vang R, Gown AM, Wu LS, Barry TS, Wheeler DT, Yemelyanova A, et al. Immunohistochemical expression of CDX2 in primary ovarian mucinous tumors and metastatic mucinous carcinomas involving the ovary: comparison with CK20 and correlation with coordinate expression of CK7. Mod Pathol 2006;19:1421-8.
Kobayashi M, Ueyama Y, Nakanishi H, Ishida H, Takahashi E, Nakamura S, et al. Immunocytochemical detection using CDX2: An aid for discerning tumor involvement in ascites cytology. Cancer 2006;108:114-8.
Seipel AH, Samaratunga H, Delahunt B, Wiklund P, Clements M, Egevad L. Immunohistochemistry of ductal adenocarcinoma of the prostate and adenocarcinomas of non-prostatic origin: a comparative study. APMIS 2016;124:263-70.
Dennis JL, Hvidsten TR, Wit EC, Komorowski J, Bell AK, Downie I, et al. Markers of adenocarcinoma characteristic of the site of origin: development of a diagnostic algorithm. Clin Cancer Res 2005;11:3766-72.
Wang C, Zhou XG. [Role of CDX2 immunostaining in diagnosis of gastrointestinal adenocarcinoma]. Zhonghua Bing Li Xue Za Zhi 2006;35:228-31. [Chinese]
Baqar AR, Wilkins S, Staples M, Angus Lee CH, Oliva K, McMurrick P. The role of preoperative CEA in the management of colorectal cancer: A cohort study from two cancer centres. Int Surg J 2019;64:10-5.
Denk H, Tappeiner G, Eckerstorfer R, Holzner JH. Carcinoembryonic antigen (CEA) in gastrointestinal and extragastrointestinal tumors and its relationship to tumor-cell differentiation. Int J Cancer 1972;10:262-72.
Kahn HJ, Yeger H, Loftus R, Goldrosen MH. Monoclonal antibody to a human pancreatic carcinoma cell line recognizes gastrointestinal neoplasms. Am J Pathol 1989;134:641-9.
Pavelic ZP, Petrelli NJ, Herrera L, Vaughan MM, Paecock JS, Pavelic L. D-14 monoclonal antibody to carcinoembryonic antigen: immunohistochemical analysis of formalin-fixed, paraffin-embedded human colorectal carcinoma, tumors of non-colorectal origin and normal tissues. J Cancer Res Clin Oncol 1990;116:51-6.
Sheahan K, O'Brien MJ, Burke B, Dervan PA, O'Keane JC, Gottlieb LS, et al. Differential reactivities of carcinoembryonic antigen (CEA) and CEA-related monoclonal and polyclonal antibodies in common epithelial malignancies. Am J Clin Pathol 1990;94:157-64.
Fei F, Li C, Cao Y, Liu K, Du J, Gu Y, et al. CK7 expression associates with the location, differentiation, lymph node metastasis, and the Dukes' stage of primary colorectal cancers. J Cancer 2019;10:2510-9.
Shahabinejad M, Zare R, Mohajertehran F, Amouzad Mahdiraji A. Cytokeratins (CK7 and CK20) genes expression association with clinicopathological indices in oral squamous cell carcinoma and dysplastic oral epithelium. Rep biochem mol Biol 2021;10:126-34.
Chu P, Wu E, Weiss LM. Cytokeratin 7 and cytokeratin 20 expression in epithelial neoplasms: a survey of 435 cases. Mod Pathol 2000;13:962-72.
Mosnier JF, Kandel C, Cazals-Hatem D, Bou-Hanna C, Gournay J, Jarry A, et al. N-cadherin serves as diagnostic biomarker in intrahepatic and perihilar cholangiocarcinomas. Mod Pathol 2009;22:182-90.
Lau SK, Prakash S, Geller SA, Alsabeh R. Comparative immunohistochemical profile of hepatocellular carcinoma, cholangiocarcinoma, and metastatic adenocarcinoma. Hum Pathol 2002;33:1175-81.
Vang R, Gown AM, Barry TS, Wheeler DT, Yemelyanova A, Seidman JD, et al. Cytokeratins 7 and 20 in primary and secondary mucinous tumors of the ovary: analysis of coordinate immunohistochemical expression profiles and staining distribution in 179 cases. Am J Surg Pathol 2006;30:1130-9.
Baars JH, De Ruijter JL, Smedts F, Van Niekerk CC, Poels LG, Seldenrijk CA, et al. The applicability of a keratin 7 monoclonal antibody in routinely Papanicolaou-stained cytologic specimens for the differential diagnosis of carcinomas. Am J Clin Pathol 1994;101:257-61.
Tot T. Adenocarcinomas metastatic to the liver: the value of cytokeratins 20 and 7 in the search for unknown primary tumors. Cancer 1999;85:171-7.
Moll R, Löwe A, Laufer J, Franke WW. Cytokeratin 20 in human carcinomas. A new histodiagnostic marker detected by monoclonal antibodies. Am J Pathol 1992;140:427-47.
Kaufmann O, Deidesheimer T, Muehlenberg M, Deicke P, Dietel M. Immunohistochemical differentiation of metastatic breast carcinomas from metastatic adenocarcinomas of other common primary sites. Histopathology 1996;29:233-40.
Roy SK, Shrivastava A, Srivastav S, Shankar S, Srivastava RK. SATB2 is a novel biomarker and therapeutic target for cancer. J Cell Mol Med 2020;24:11064-9.
Moh M, Krings G, Ates D, Aysal A, Kim GE, Rabban JT. SATB2 expression distinguishes ovarian metastases of colorectal and appendiceal origin from primary ovarian tumors of mucinous or endometrioid type. Am J Surg Pathol 2016;40:419-32.
De Michele S, Remotti HE, Del Portillo A, Lagana SM, Szabolcs M, Saqi A. SATB2 in Neoplasms of Lung, Pancreatobiliary, and Gastrointestinal Origins. Am J Clin Pathol 2021;155:124-32.
Arango D, Al-Obaidi S, Williams DS, Dopeso H, Mazzolini R, Corner G, et al. Villin expression is frequently lost in poorly differentiated colon cancer. Am J Pathol 2012;180:1509-21.
Liu H, Shi J, Anandan V, Wang HL, Diehl D, Blansfield J, et al. Reevaluation and identification of the best immunohistochemical panel (pVHL, Maspin, S100P, IMP-3) for ductal adenocarcinoma of the pancreas. Arch Path Lab Med 2012;136:601-9.
Ansari D, Rosendahl A, Elebro J, Andersson R. Systematic review of immunohistochemical biomarkers to identify prognostic subgroups of patients with pancreatic cancer. Br J Surg 2011;98:1041-55.
Tot T. Cytokeratins 20 and 7 as biomarkers: usefulness in discriminating primary from metastatic adenocarcinoma. Eur J Cancer 2002;38:758-63.
Duval JV, Savas L, Banner BF. Expression of cytokeratins 7 and 20 in carcinomas of the extrahepatic biliary tract, pancreas, and gallbladder. Arch Path Lab Med 2000;124:1196-200.
Rullier A, Le Bail B, Fawaz R, Blanc JF, Saric J, Bioulac-Sage P. Cytokeratin 7 and 20 expression in cholangiocarcinomas varies along the biliary tract but still differs from that in colorectal carcinoma metastasis. Am J Surg Pathol 2000;24:870-6.
Wang N, Zee S, Zarbo R, Bacchi C, Gown A. Coordinate expression of cytokeratin-7 and cytokeratin-20 defines unique subsets of carcinomas. Appl Immunohistochem 1995:99-107.
Ma H, Xiao W, Wang M, Shi X. CDH17+/CDX2+ can be helpful in providing support for small intestinal origin versus pancreatic or biliary origin. Appl Immunohistochem Mol Morphol 2021;29:541-5.
Shahryarhesami S, Heidari M, Heidari M, Sadighi N. Human Homeobox TGIFLX Regulates CDX1, CDX2, and OCT1 Genes Expression in Colorectal Cancer Cell Lines. Middle East J Cancer 2022;13:216-25.
Werling RW, Yaziji H, Bacchi CE, Gown AM. CDX2, a highly sensitive and specific marker of adenocarcinomas of intestinal origin: an immunohistochemical survey of 476 primary and metastatic carcinomas. Am J Surg Pathol 2003;27:303-10.
Bayrak R, Haltas H, Yenidunya S. The value of CDX2 and cytokeratins 7 and 20 expression in differentiating colorectal adenocarcinomas from extraintestinal gastrointestinal adenocarcinomas: cytokeratin 7-/20+ phenotype is more specific than CDX2 antibody. Diagn Pathol 2012;7:1-11.
Cheung PY, Wang W, Schulz R. Glutathione protects against myocardial ischemia-reperfusion injury by detoxifying peroxynitrite. J Mol Cell Cardiol 2000;32:1669-78.
- Abstract Viewed: 320 times
- PDF Downloaded: 16 times